Live your best possible life. How good can it get?



Enjoying lunch with friends in San Francisco the other day, our conversation turned to the way people so often decide on some arbitrary line of demarcation that acts as a boundary we then choose to respect. We thus end up with geographic boundaries for our cities, counties, states, and nations. We have boundaries for races, genders, ages, politics, and religions. We set boundaries for what kind of news and scientific reporting we consider legitimate. These boundaries seem quite real to us when we’re closely involved in whatever is being divided up–but as soon as we get some distance between ourselves and whatever is being divided up, we can find ourselves hard pressed to explain why any particular dividing line was so essential.

While these lines may seem benign, they can contribute to serious problems. One of my friends explained how she’d conducted a search for an African American computer engineer employee a few years ago. She’d thought finding a black programmer would be fairly straightforward, and was surprised to discover that was not the case. When she finally found and hired a young black man, she asked him why he thought there were so few blacks involved in Information Technology. He replied that African Americans, “just don’t have the required skills.” While this young man clearly believed this to be true, my friends and I were aghast at how such a thing could be. Even if young African Americans are not provided with requisite skills to be accepted to college computer science programs—what belief system is contributing to this situation? At some point there must be an artificial line of demarcation—some point where those fit to learn computer programming skills may proceed onward and upward, and all considered to be “unfit” may not.

Why do we feel such a burning need to draw these boundaries—these artificial lines of demarcation? One of my friends pointed out that we could, as John Lennon invites us to do in the lyrics in his song, Imagine, simply choose to walk through those imaginary boundaries–yet the reason most people don’t do just that has to do with a fear of losing control. He summed it up as,

“We set boundaries because of a need for control.” 

All of this was on my mind when I received an email from a thoughtful reader, who wrote:

While QM itself gives many observable examples of the fluidity and variability of our realities what is being developed as quantum computing does not. That’s because it has been developed in a “put new wine in old bottles” fashion. It uses binary as base. So in classical computing a bit can be in one of two states 0 OR 1. A qubit can be in one of three states 0 OR 1 OR (0 and 1) – the state of superposition. Of course computers have to be practical so such an approach, limited though it may be, makes sense.

It’s like the cat in the box. The example was given using only alive and dead. But in actuality a superposition can be and usually is more (alive|dead|male|female|tabby|calico|etc) Superposition is the confluence of two or more seemingly discrete states. But our thinking at the moment is strongly binary. Hence our creation of digital as being the foundation for our current approach to computing.

Illustration from the book, "Quantum Jumps"

Illustration from the book, Quantum Jumps

I replied to this email message stating that I agreed with the point about there being a bias toward viewing the world with a bias toward binary / classical operations. I love the example of Schrodinger’s cat not simply being alive or dead (which is essentially a throwback to binary either/or classical thinking), but rather “alive, sickly, pregnant, old, young, dead, etc.” And the way that quantum logic was initially described contains classical binary bias, with the “von Neumann cut” being the imaginary line by which one supposedly can determine whether to employ Classical or Quantum physics equations.

But what if this arbitrary line of demarcation is just as artificial and man-made as all of our other artificially constructed boundary lines? What if the scientists seeking a Theory of Everything (TOE) one day prove that all of the physical world is ruled by quantum physics laws and equations, and classical physics is just a limited, special case? As far out as that may seem, a growing number of scientists are writing research papers and proposing theories stating just that.

Classical logic is a special case (subset) of quantum logic

Classical logic is a special case (subset) of quantum logic. Illustration from Cynthia Sue Larson’s paper, Primacy of Quantum Logic in the Natural World.

I published a paper, Primacy of Quantum Logic in the Natural World, pointing out something similar to what the person who emailed me is saying–that we need true quantum logic, and not warmed-over classical Boolean logic approaches that won’t ever get to the heart of the essence of true quantum logic and phenomena. As I explain in my paper, quantum logic and phenomena appears to be the larger set within which classical physics and logics resides, and not the other way around. It is thus incumbent on us to pay better attention to the natural world in order to learn to recognize the natural order of quantum logic all around us, including occasional evidence of reality shifts and quantum jumps demonstrating Evidence of Macroscopic Quantum Phenomena.

Quantum computing represents the beginning of a truly new form of technology, thus indicating that we’re now entering the Quantum Age. The aspect of quantum computers I find of secondary interest is that in order to build quantum computers, we require quantum phenomena occurring on a macroscopic scale, as well as a true understanding of quantum logic. Thanks to the work of researchers in the fields of quantum biology, quantum cognition, and quantum cosmology–such as Johnjoe McFadden, Jerome Busemeyer, and Yasunori Nomura who I’ve interviewed in my blog and my Living the Quantum Dream radio show–we can now start to recognize that Nature is already utilizing quantum logic, and Nature already shows evidence of quantum phenomena occurring on a macroscopic scale. The photosynthesis of plants has been proven to be a quantum process happening in a warm, wet, “noisy” biological environment where such things “weren’t supposed to happen,” yet clearly they are.

And fortunately for us, it increasingly seems more and more clear that rather than living in a binary, limited, boundary-constricted world—the natural world is likely much more unrestricted, open, and quantum in every way.

Here is a short video summary of some of the points in this article, filmed on location in San Francisco where I met my friends for lunch:


QuantumJumps300x150adCynthia Sue Larson is the best-selling author of six books, including Quantum Jumps. Cynthia has a degree in Physics from UC Berkeley, and discusses consciousness and quantum physics on numerous shows including the History Channel, Coast to Coast AM, the BBC, One World with Deepak Chopra, and her radio show, Living the Quantum Dream. You can subscribe to Cynthia’s free monthly ezine at:

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Tag Cloud

%d bloggers like this: